Постоянное повышение цен на энергоносители заставляет потребителей искать другие методы обеспечения своих домов теплом и освещением. Основные варианты, представляющие альтернативу необновляемым источникам топлива, давно известны, и пришло время активно внедрять их в практику. Рассматривая это подробнее, стоит учесть «возможность использования альтернативных источников энергии для дома».
Об альтернативной энергии написано очень много. Однако о реальных перспективах ее применения говорится не часто. Попробуем выяснить, можно ли ожидать от возобновляемых ресурсов значительной экономии.
Альтернативная энергия: мифы и реальность
Часто можно услышать фразы вроде: «Зачем мне солнечная батарея, если у нас от силы 90 солнечных дней в году?» или «Какой смысл ставить ветрогенератор, если в нашей местности слабые ветры?». Эти утверждения не лишены оснований.
Например, в странах Средиземноморья, в частности Испании и Италии, с 2007 года застройщики обязаны устанавливать на крышах солнечные водонагреватели. Они позволяют обеспечить до 70% нужд потребителей в горячей воде, в зависимости от области и уровня расхода воды. В Израиле с 1976 года по закону многоквартирные жилые дома обязаны комплектоваться солнечными водонагревателями, поэтому свыше 85% квартир жилого фонда пользуются энергией солнца.
Однако лидером в использовании солнечной энергии остается Китай. Напомним, страна лежит в целой группе климатических поясов − от субтропического до умеренно холодного и при этом умеет экономить.
С ветрогенераторами тоже не все просто. Установить на даче стометровую мачту ветряка вы, разумеется, не сможете. А если домик с трех сторон окружен лесом, то с понятием «ветер» вы, можно сказать, не знакомы. В то же время в Дании 40% всей электроэнергии получают за счет ветряных электростанций.
Таким образом, когда речь заходит об альтернативных источниках энергии, не нужно разом отбрасывать все из них или устанавливать солнечные батареи и «ветряки» где ни попадя. Речь всегда шла (и идет) о дополнении к основным коммуникациям и пусть небольшой, но экономии. Изучите климатические особенности вашей местности, возможно, кое-какими альтернативными источниками можно воспользоваться.
Солнечная энергия
Энергией солнца мы привыкли пользоваться, сами того не замечая. В зависимости от частоты применения, использование солнечной энергии делится на пассивное и активное.
В пассивной гелиосистеме солнечный свет попадает на объекты и приборы в «свободном режиме», возможность подстроиться под его направление и интенсивность отсутствует. Поэтому нет гарантии равномерного теплоснабжения и 100%-ного использования энергии. Зато этот способ не требует особых финансовых затрат. К пассивным гелиосистемам относятся парники, теплицы, остекленные лоджии, оранжереи и выкрашенные в темные цвета (для максимального поглощения солнечных лучей) емкости-резервуары для хранения воды летом.
Активная гелиосистема подразумевает применение специальных устройств. «Продвинутой» версией поглотителя света является солнечный коллектор, или гелиоприемник. Эта установка собирает тепловую энергию солнца, которая переносится видимым светом в инфракрасном диапазоне. После этого тепло передается системам водоснабжения и отопления. В равной степени солнечный коллектор может использоваться и для снабжения дома электричеством.
В отличие от коллектора, солнечная батарея способна вырабатывать только электричество. В насыщенные солнечным светом дни она выдает максимум своих возможностей, а в пасмурные часы и зимой – не более трети.
Дачный сезон как раз совпадает с максимальной солнечной активностью. Периоды с мая по сентябрь наиболее насыщены солнечным светом. Поэтому не совсем рациональны вопросы о том, «что делать зимой, когда солнца нет?». Ведь вас в это время на даче тоже, как правило, нет.
Отсюда вывод: чем южнее регион вашего проживания, тем больше смысла в установке солнечной батареи.
Устанавливать солнечную батарею лучше всего на южной стороне крыши. Рассчитать, сколько установок и какая мощность нужно именно вам, должны специалисты. Они исходят из климатических особенностей, количества электроприборов и интенсивности их использования.
Теперь о практическом применении. На большей части территории России, например, в теплый период (с апреля по конец сентября) среднедневная сумма солнечного излучения равняется 4-5 кВтч/кв.м. На юге Испании она достигает 6 кВтч/кв.м., а на юге Германии – около 5 кВтч/кв.м. Такая интенсивность солнечного света позволяет нагревать до 100 л воды практически каждые сутки при помощи коллектора площадью 2 кв.м. Что интересно, регионами-лидерами по поступлению солнечной радиации считаются Приморье, Забайкалье и Юг Сибири, а только затем идет южная полоса европейской части России. Значительная часть Сибири, как оказалось, также не обделена солнечным излучением.
Для всесезонного применения нужно подбирать коллекторные установки с обширной рабочей поверхностью, двумя контурами с антифризом и оснащенные дополнительными теплообменниками. Идеальным вариантом является вакуумированный коллектор − в нем выше разница температур между воздухом снаружи и нагреваемым теплоносителем.
Ветрогенераторы
История развития ветрогенераторов на просторах бывшего СССР весьма трагична. Учитывая обширные районы, в которых почти постоянно дуют ветры, активные попытки обуздать энергию ветра предпринимались еще в начале 20 века. Но, к сожалению, к концу 60-х гг. производство «ветряков» и строительство ВЭС было прекращено.
Еще совсем недавно (с 1988 по 1992 гг.) производилась «домашняя» версия ветромеханического водоподъемного агрегата (ветряного насоса) АВВП-1,2 «Ромашка». Он предназначался для забора жидкости из любых водоемов на глубине до 8 м и использовался как в домашних, так и в коллективных хозяйствах. Это был простой, дешевый и удобный автоматический прибор.
Теперь ветроэнергоустановки используются индивидуальными пользователями для получения электроэнергии. Вырабатываемой «ветряком» мощности в 50 кВт вполне хватает для обслуживания небольшого коттеджа.
Система призвана накапливать электричество. Чем чаще и сильнее дует ветер, тем быстрее заряжаются аккумуляторы и энергией можно пользоваться. Бытовые ветрогенераторы в областях с умеренным преобладанием ветров вполне способны дополнительно обеспечивать здание светом.
Основой ветрогенератора выступает ветроколесо. Под действием силы ветра оно вращается, создавая крутящий момент и передавая его через механизм передач на водяной насос или вал электрогенератора. Ветрогенераторы обычно крепят на высоких мачтах не для того «чтобы все видели», а потому что интенсивность и скорость ветра над поверхностью земли выше, чем на «нулевой отметке».
Ветрогенераторы для дома бывают трех видов:
- Карусельного типа (роторные) – оснащены ветроколесом (ротором), которое движется в направлении ветра. Ось вращения – вертикальная. Коэффициент полезного действия не выше 20%.
- Крыльчатые ветрогенераторы – имеют вид классического пропеллера с числом лопастей от 2 до 24. Чем меньше лопастей, тем выше должна быть скорость ветра «для раскрутки». Ветряк с числом лопастей до 4 называется малолопастным, если лопастей более 4 – многолопастными. Ось вращения параллельна ветру, КПД довольно высок – 40-50%.
- Барабанные ветрогенераторы – похожи на роторные ветряки, только лопасти расположены в горизонтальной проекции. Ось вращения находится под углом 90 градусов к направлению ветра, что, как следствие, формирует низкий КПД – до 10%.
Итак, в отличие от солнечных коллекторов и батарей, ветрогенераторы лучше устанавливать в северных районах с сильными, частыми и порывистыми ветрами. Чаще всего они дуют вблизи водоемов, в горах и на открытых участках в соответствующей области.
Тепловая энергия земли
Тепло можно брать отовсюду – из грунта, воздуха, подземных источников и поверхностных вод. Для сбора низкотемпературного тепла, повышения его качеств и передачи потребителю применяются тепловые насосы. Использовать «тепло земли» можно для горячего водоснабжения, отопления и кондиционирования.
Известно несколько видов тепловых насосов:
- Грунтовые – они собирают тепло при помощи закопанного ниже уровня промерзания земли горизонтального коллектора или проложенного в вертикальной скважине теплового зонда. Мощные и дорогие установки способны обеспечить потребителя теплом зимой, но использовать их лучше только в качестве аварийного варианта.
- Водяные – по тому же принципу отбирают тепло у грунтовых вод или иных водоемов. Температура там обычно не опускается ниже 6°С. Водяные тепловые насосы сложны в монтаже, поскольку нужно бурить скважину и проводить регулярную очистку насоса.
- Воздушные – обычно используются в теплых широтах, вбирая в себя тепло из окружающего воздуха.
Тепловой насос – довольно сложный прибор, который в условиях крайне низких температур практически не применим.
Энергия воды
При упоминании этого источника альтернативной энергии в памяти всплывают огромные гидроэлектростанции и средневековые мануфактуры с колесами, по которым стекает вода. В основном энергия воды используется именно в таких, «промышленных» масштабах.
Впрочем, если у вас есть регулярный доступ к воде, можно попробовать изготовить что-нибудь наподобие мини-ГЭС. Использовать водяное колесо, пропеллер или ротор Дарье. Для этого не обязательно жить возле водопада или бурной горной реки. Достаточно лишь грамотно установить конструкции в местах, где есть движение воды и наличия течения. Если скорость водного потока менее 1 м/с, монтировать подобные станции нет смысла.
Напоследок упомянем такой оригинальный источник энергии, как биомасса. Она представляет собой сухие остатки растений, продуктов жизнедеятельности и занимает шестое место по распространенности. Ежегодно на Земле образуется около 170 млрд тонн первичной биомассы, которая постепенно разрушается, не находя применения в хозяйстве. В основном она служит для выработки тепла и электричества, используется при приготовлении биотоплива (биодизеля). В других случаях из нее получают биогаз, который преобразуется в тепловую и электрическую энергию.
Таким образом, альтернативные источники энергии пока претендуют лишь на частичную замену основных ресурсов. Они направлены на экономию и непредвиденные обстоятельства. А еще предполагают безвозмездное использование тех благ, которые нам подарила сама природа.
Какие преимущества и недостатки имеют альтернативные источники энергии?
Альтернативные источники энергии имеют ряд преимуществ и недостатков.
Преимущества альтернативных источников энергии:
-
Экологически чистые: альтернативные источники энергии не загрязняют окружающую среду, в отличие от традиционных источников энергии, таких как нефть, газ и уголь.
-
Возобновляемые: альтернативные источники энергии, такие как солнечная и ветровая энергия, являются возобновляемыми, то есть их можно использовать бесконечное количество раз без исчерпания ресурсов.
-
Экономически выгодны: хотя установка и поддержание альтернативных источников энергии может быть дорогой в начале, они могут значительно сэкономить деньги в будущем, так как не требуют покупки топлива и обслуживания, которые необходимы для традиционных источников энергии.
-
Децентрализованные: альтернативные источники энергии могут быть установлены по всей территории, что позволяет создавать небольшие энергетические системы на местах, что уменьшает зависимость от централизованных систем электроснабжения.
Недостатки альтернативных источников энергии:
-
Неустойчивость: альтернативные источники энергии, такие как солнечная и ветровая энергия, зависят от погодных условий, что может привести к нестабильности в поставках электроэнергии.
-
Ограниченность: не все виды альтернативных источников энергии могут быть использованы везде, например, гидроэнергия требует наличия рек или водохранилищ.
-
Высокая стоимость: хотя альтернативные источники энергии могут сэкономить деньги в будущем, установка их оборудования может быть дорогой, что может затруднить доступность для некоторых людей.
-
Возможные негативные воздействия на окружающую среду: некоторые альтернативные источники энергии могут имет
- Уменьшение экологического влияния: использование альтернативных источников энергии, таких как солнечные батареи или ветряные турбины, может снизить выбросы вредных веществ в атмосферу и уменьшить зависимость от нефти и газа.
- Долгосрочная экономия: инвестирование в альтернативные источники энергии может позволить снизить затраты на энергию в долгосрочной перспективе, так как некоторые типы альтернативных источников энергии могут производить энергию постоянно и бесплатно после начальных инвестиций.
- Уменьшение зависимости от поставщиков энергии: использование альтернативных источников энергии может уменьшить зависимость от традиционных поставщиков энергии, что может быть особенно полезно в регионах с ограниченным доступом к газу и нефти.
- Недостатки:
- Высокие начальные затраты: вложения в альтернативные источники энергии могут быть очень высокими, особенно при установке оборудования, такого как солнечные батареи или ветряные турбины.
- Непостоянность: некоторые типы альтернативных источников энергии, такие как солнечные батареи и ветряные турбины, могут не производить энергию постоянно и не могут быть использованы как основной источник энергии.
- Проблемы с хранением: в некоторых случаях может потребоваться хранение избытка произведенной энергии для использования в периоды, когда источник энергии недоступен, например, в ночное время или во время безветрия. Это может требовать дополнительных инвестиций в оборудование для хранения энергии.
- Воздействие на окружающую среду: в некоторых случаях, строительство и эксплуатация альтернативных источников энергии может иметь отрицательное воздействие на окружающую среду, например, в случае дамб для гидроэлектростанций или установок для производства биогаза.
Н