Когда дело касается проектирования фундаментов в условиях сейсмической активности, необходимо следовать стандартам и требованиям, изложенным в СП 14.13330.2011 «Строительство в сейсмических районах. Актуализированная редакция СНиП II-7-81*». Каким образом выполняется армирование ленточных фундаментов в сейсмических районах? Сейсмические воздействия на фундамент обусловлены землетрясениями, происходящими в результате тектонических разломов в земной коре. От гипоцентра во всех направлениях распространяются упругие колебания, характеризуемые сейсмическими волнами (продольными, поперечными и поверхностными). Сейсмические воздействия вызывают колебания зданий и сооружений, которые приводят к появлению в элементах надземных конструкций сил инерции. На величину последних решающее влияние оказывает интенсивность землетрясения, измеряемая балльностью. Сейсмические воздействия, как и любые динамического характера нагрузки на основания, приводят к изменению свойств грунтов: увеличивается сжимаемость, особенно несвязных грунтов; уменьшается их предельное сопротивление сдвигу, вследствие вызванного вибрацией уменьшения трения между частицами. Импульсные воздействия средней величины могут вызвать дополнительные осадки и просадки оснований, а импульсы значительной величины – разрушение структуры грунтов, уменьшение их прочности, потерю устойчивости оснований. При определенных условиях может происходить разжижение водонасыщенных песчаных оснований, приводящее к полному исчерпыванию их несущей способности. Эти изменения строительных свойств грунтов и специфический характер взаимодействия сооружения с основанием определяют особенности проектирования фундаментов в условиях сейсмических воздействий. В России принята 12-балльная шкала оценки силы землетрясения. Вся территория России поделена на отдельные районы по сейсмичности, но даже в пределах одного района сейсмичность может быть различной в зависимости от грунтовых условий. Во многих районах выполнено микросейсмирование (повышение или понижение сейсмичности на 1 балл, которое санкционируется Госстроем). Сейсмичность площадки в зависимости от категории грунта приведена в табл. 5.1. Сейсмические воздействия при проектировании учитываются при интенсивности сейсмических колебаний 7, 8 и 9 баллов. При интенсивности более 9 баллов строительство возможно только по разрешению вышестоящих органов в соответствии с утвержденными требованиями. По сейсмическим свойствам грунты разделяются на три категории: Таблица 5.1
I категория: скальные грунты всех видов (в том числе вечномерзлые и вечномерзлые оттаявшие); невыветрелые и слабовыветрелые; крупнообломочные грунты плотные маловлажные из магматических пород, содержащие до 30 % песчано-глинистого заполнителя; выветрелые и сильновыветрелые скальные и нескальные твердомерзлые (вечномерзлые) грунты при температуре – 2 0С и ниже при строительстве и эксплуатации по принципу 1 (сохранение грунтов основания в мерзлом состоянии); II категория: скальные грунты выветрелые и сильновыветрелые (в том числе, вечномерзлые, кроме отнесенных к I категории); крупно-обломочные грунты (за исключением отнесенных к I категории); пески гравелистые, крупные и средней крупности, плотные и средней плотности маловлажные и влажные; пески мелкие и пылеватые плотные и средней плотности маловлажные; глинистые грунты с показателем текучести IL £ 0,5 при коэффициенте пористости с < 0,9 для глин и суглинков, и е < 0,7 для супесей; вечномерзлые нескальные грунты пластичномерзлые или сыпучемерзлые, а также твердомерзлые при температуре выше – 2 0С при строительстве и эксплуатации по принципу 1; III категория: пески рыхлые независимо от влажности и крупности; пески гравелистые, крупные, средней крупности плотные и средней плотности водонасыщенные; пески мелкие и пылеватые плотные и средней плотности, влажные и водонасыщенные; глинистые грунты с показателем текучести IL > 0,5; глинистые грунты с показателем текучести IL £ 0,5 при коэффициенте пористости е ³ 0,9 для глин и суглинков и е ³ 0,7 – для супесей; вечномерзлые нескальные грунты при строительстве и эксплуатации по принципу II (допущение оттаивания грунтов основания). При неоднородном составе грунты площадки строительства относятся к более неблагоприятной категории грунта по сейсмическим свойствам, если в пределах 10-метровой толщи грунта (считая от планировочной отметки) слой, относящийся к этой категории, имеет суммарную толщину более 5 м. Расчет фундаментных конструкций и их оснований выполняют на основное и особое сочетание нагрузок, причем в последнее обязательно включается сейсмическая нагрузка. Расчетную сейсмическую нагрузку получают в результате динамического расчета всего здания на колебания и прикладывают в точках расположения масс элементов конструкций. При динамическом расчете учитывают массу отдельных элементов здания, сейсмичность района, формы собственных колебаний, особенности колебаний сооружения, тип грунтовых условий, конструктивное решение сооружения и характер допускаемых повреждений и дефектов. После получения сейсмических нагрузок на основании принципа Даламбера проводят статический расчет конструкций здания в предположении совместного действия сейсмической и статической нагрузки. Дополнительные горизонтальные нормальные и касательные напряжения, возникающие в основании при прохождении сейсмических волн, определяют по формулам: ; , (5.10) где kс – коэффициент сейсмичности (при 7 баллах kс = 0,025; при 8 баллах – 0,05 и при 9 баллах – 0,1); γ – удельный вес грунта; Сp и Сs – соответственно скорости распространения продольных и поперечных сейсмических волн; Т0 = 0,5 – период скорости сейсмических колебаний, с. Сейсмические инерционные нагрузки, действующие на фундамент во время землетрясения, определяют по формуле (5.11) где Gk – вес элемента сооружения, отнесенный к точке к; γn – коэффициент, зависящий от класса сооружения (принимается в пределах 1–1,5); – коэффициент динамичности; – коэффициент, учитывающий форму колебаний. При проектировании и строительстве в сейсмических районах глубину заложения фундаментов в грунтах I и II категорий назначают как для несейсмических районов, но не менее 1 м; грунты III категории требуют предварительного искусственного улучшения. Фундаменты зданий и их отдельных отсеков рекомендуется закладывать на одном уровне во избежание изменения частоты собственных колебаний. В зданиях повышенной этажности следует увеличивать глубину заложения с помощью устройства дополнительных подземных этажей. При прохождении сейсмических волн поверхность грунта может испытывать растяжение и сжатие в различных направлениях, что может вызвать подвижку фундаментов относительно друг друга, поэтому для исключения подвижки и устойчивости фундаментов рекомендуется возводить сплошные плитные фундаменты или непрерывные фундаменты из перекрестных лент (рис. 5.3, а ), устраиваемых в сборном или монолитном варианте. Для усиления сборных фундаментов по верху подушки укладывают арматурные сетки и устраивают перевязку блоков в углах и пересечениях, а при сейсмичности 9 баллов армируют все сопряжения стен подвалов. Фундаменты каркасных зданий допускается устанавливать на отдельные фундаменты, которые соединяются друг с другом железобетонными вставками (рис. 5.3, б ). Рис. 5.3. Схемы фундаментов в сейсмических районах Для предотвращения подвижки здания по обрезу фундамента гидроизоляцию стен необходимо выполнять в виде цементного слоя. Применение гидроизоляции на битумной основе не разрешается. При использовании свайных фундаментов необходима жесткая заделка свай в непрерывный ростверк для восприятия горизонтальных усилий, возникающих при землетрясениях, при этом следует стремиться опирать нижние концы свай на плотные грунты. Влияние сейсмических воздействий на работу свайных фундаментов учитывают с помощью понижающих коэффициентов условий работы, при расчете несущей способности основания по боковой поверхности и под острием сваи. Самыми неблагоприятными основаниями являются водонасыщенные пески, способные разжижаться в условиях сейсмических воздействий и приводить к провальным осадкам зданий, поэтому их следует использовать в качестве оснований только после предварительного уплотнения вибрированием, песчаными сваями или каким-либо другим способом. Проектирование и устройство фундаментов с учетом сейсмических воздействий гарантируют сохранность сооружения при условии, если и надземная часть здания возведена с учетом данных воздействий. Поиск по сайту©2015-2023 poisk-ru.ru |
Поиск по сайту:
Обратная связь |
Можно ли делать фундамент без арматуры?
Можно строить фундамент без арматуры, однако это зависит от типа фундамента, назначения здания, типа почвы и других факторов. В большинстве случаев арматура используется для укрепления бетонного фундамента и придания ему дополнительной прочности, особенно в условиях, где фундамент может подвергаться нагрузкам из-за термического расширения, сжатия, сдвига или растяжения.
Рассмотрим несколько ключевых моментов:
-
Ленточный фундамент: Чаще всего для ленточных фундаментов используется арматура, потому что они несут весь вес здания. Армирование обеспечивает дополнительную прочность и уменьшает вероятность трещин в бетоне.
-
Столбчатый фундамент: В зависимости от нагрузки и размера столбов, они могут быть выполнены без арматуры, но это редкость.
-
Плитный фундамент: Такой тип фундамента часто армируется из-за большой площади и необходимости равномерно распределять нагрузку.
-
Мелкие строения: Если речь идет о небольших временных или легких строениях (например, сарай или небольшой деревянный сарай), то может быть решено обойтись без армирования фундамента.
-
Почва: На неустойчивых, сыпучих или глинистых почвах армирование фундамента становится критически важным, чтобы предотвратить оседание или деформацию фундамента.
-
Сейсмическая активность: В районах с высокой сейсмической активностью армирование фундаментов становится еще более важным, чтобы обеспечить устойчивость строений к землетрясениям.
В заключение: хотя теоретически можно строить фундамент без арматуры, это не рекомендуется для большинства стандартных строений. Армирование значительно увеличивает прочность и долговечность фундамента, что, в свою очередь, уменьшает риск будущих проблем со строением.