–
Светодиод обозначение на схеме – это разновидность диода. Особенность светодиода заключается в его способности излучать свет при прямом подключении, когда ток направлен от анода (+) к катоду (-). Поэтому светодиод сокращенно называют LED, что расшифровывается как «light emitting diode» с английского.
Из чего состоит светодиод?
Так как светодиод разработан на базе обычного диода, то его структура включает в себя базовые элементы диода. Для большей функциональности в светодиод добавлены дополнительные элементы.
Как мы видим на изображении, подобно обычному диоду, внутри светодиода есть два слоя полупроводника p- и n-типа. Они закреплены на клемме-подложке, которая непосредственно связана с катодом. Верхний слой полупроводника связан с анодом проволочной связью.
Корпус светодиода изготавливают из светопрозрачных материалов, в основном это пластик или стекло. В зависимости от конфигурации, светодиод может быть с дополнительными техническими решениями. Это изменения корпуса (форма, наличие линзы, металлические теплоотводящие элементы) и внутренних составляющих (несколько p-n пар полупроводника, люминесцентное заполнение, управляющий чип, рефлектор и пр.)
Принцип работы светодиода
При прямом подключении светодиода к источнику питания, происходит рекомбинация электронов и дырок в запрещенной зоне полупроводников. При этом выделяется определенное количество тепла и света. Отмечу, что полупроводниковый кристалл любого диода при прямом подключении излучает фотоны света, но спектр волн этого излучения находится вне видимой глазу зоны.
Кристаллы светодиодов производят с примесями арсенида и фосфида галлия, алюминия, теллурида кадмия, селенида цинка, соединений индия и других. Примеси изменяют ширину запрещенной зоны и позволяют задать светодиоду нужный интенсивность свечения и цвет.
Направление и угол рассеивания потока светового излучения в светодиодах задают линзы и рефлекторы.
Кристаллы сверхмощных светодиодов размещают на теплоотводных площадках из меди или алюминия для защиты от перегрева.
Применение светодиодов
Элементарная функция светодиода это – индикация. Это может быть индикация состояния прибора ВКЛ/ВЫКЛ, или индикация режима, в котором работает прибор. Чтобы подсветить панель прибора, на помощь так же приходят светодиоды. Например, вы включаете аудиоколонки на компьютере и зеленый светодиод информирует вас о том, что питание включено. Монитор компьютера перешел в “энергосберегающий режим” – об этом информирует мигающий оранжевый светодиод, вместо обычно горящего синего. А чтобы вы не искали в темноте выключатель – он подсвечивается светодиодом.
Еще пример использования – подсветка дисплея. ЖК-дисплеи требуют дополнительной подсветки с боковой или тыльной стороны. Эту задачу решают светодиоды. Фонарик, гирлянда, светофор, рекламная бегущая строка, и даже огромный LED-телевизор (светодиоды выполняют роль пикселей на экране) – подсвечиваются благодаря светодиодам.
ы совершенствуются и получают все больше преимуществ. Например, высокая яркость при относительно малом потреблении тока и широкий спектр цветов позволяют широко использовать светодиоды в декорировании и освещении (светодиодные ленты, светильники, лампы, прожекторы).
Один из видов светодиодов излучает не только видимый диапазон волн света. Пример – пульт от телевизора или других бытовых приборов оснащен светодиодом, который работает в инфракрасном диапазоне волн. Благодаря ему устройство-приемник на приборе получает ИК сигналы от пульта. А более мощные ИК-модели светодиодов используют аграрии, чтобы обеспечить растениям свет при любых природных условиях.
Ультрафиолетовый светодиод пришел на замену газоразрядным УФ-лампам. Его используют в медицине, промышленности, косметологии, криминалистике.
ы также «перекачивают» колоссальный объем интернет-трафика по оптоволоконным сетям. В отличие от обычной лампы накаливания – светодиод может излучать импульсы света с очень высокой частотой.
Разновидности, обозначение
на схеме изображается следующим образом:
Знакомый нам диод дополняется двумя стрелками, направленными в сторону по диагонали от него. Круглая обводка не является обязательной, и на многих схемах опускается. Буквенное обозначение светодиода на принципиальных схемах зависит от производителя. Это может быть аббревиатура HL, VD, LED.
Подключение светодиода происходит по следующей схеме:
В схеме обязательно (!) должен быть токоограничивающий резистор. Если его не использовать – срок службы светодиода сократится в разы, а в некоторых случаях без дополнительной нагрузки светодиод может выйти из строя после первого включения питания.
Это вызвано тем, что кристалл полупроводника достигает состояния теплового пробоя (пиковые значения тока производитель указывает в спецификации), это выводит светодиод из строя.
Дело в том, что определяющим параметром светодиода является его рабочий ток, а напряжение питания варьируется уже в зависимости от него.
Для того, чтобы рассчитать, какой резистор нужен, воспользуйтесь формулами:
- Сопротивление: R = (Uпит – ULED) / ILED
- Мощность: P = (Uпит – ULED) * ILED
где:
- Uпит – напряжение источника питания;
- ULED – прямое падение напряжения светодиода;
- ILED – рабочий ток светодиода.
Если полученного результата в списке номиналов резисторов нет – используйте ближайший к нему в сторону увеличения или корректируйте дополнительными сопротивлениями. Также не забывайте и о мощности резистора. Недостаточно мощный будет греться или перегорит. Используйте сопротивление с запасом мощности 20-30%.
Имейте ввиду, что резкое изменение тока в цепи светодиода также пагубно влияет на его работу. Поэтому нужно предварительно стабилизировать ток в цепи. При использовании светодиодных лент, ламп, и подобных приборов, используют блоки питания с автоматической стабилизацией тока.
При эксплуатации светодиодов, обезопасьте их от обратного тока. Если обратный ток превысит допустимое производителем значение – светодиод выйдет из строя. Включать светодиоды можно как последовательно, так и параллельно, но обязательно корректируйте ток резисторами. Наиболее эффективная схема подключения группы светодиодов – последовательная.
Допускается подключение светодиода в цепь переменного тока. В этом случае, когда через светодиод будет проходить импульс прямого тока – он будет светиться, импульс обратного – нет (т.е. будет мигать с частотой переменного тока). При таком подключении используйте в схеме диод, который защитит светодиод от импульсов обратного тока.
ы условно делятся на два типа:
- индикаторные;
- осветительные.
Главная характеристика индикаторного светодиода – относительно невысокая мощность (при этом высокая яркость) и широкий спектр цветов. Цвет, которым будет гореть такой светодиод, определяется типом химической примеси, которую добавляют в кристалл полупроводника.
Виды индикаторных светодиодов
DIP-светодиод
Такие светодиоды обладают малым углом рассеивания (до 60°).
Корпус, как правило, изготовлен из пластмассы или стекла, может быть прозрачным или цветным; цилиндрическим или прямоугольным; с линзой или без неё.
В одном корпусе таких светодиодов могут размещаться кристаллы с разным цветом свечения. У этих светодиодов есть дополнительные выводы и подключаются они по принципу общего анода или общего катода.
RGB–светодиод
На одной матрице размещает сразу три кристалла: красный, зеленый и синий. Благодаря управлению каждым таким кристаллом независимо друг от друга, можно добиться практически любого цвета.
Чтобы эти кристаллы не выделялись точечно через линзу RGB – светодиода, на корпус может наноситься матовое покрытие, которое сглаживает цвета.
Super Flux «Piranha»
Такой светодиод дает пучок света с углом рассеивания в диапазоне 40°-120°. Обладает повышенной яркостью, но разных цветов нет – можно выбрать только температуру белого свечения. На корпусе «пираньи» четыре вывода для крепежа на монтажной плате. Наличие линзы зависит от модели.
Straw Hat
Кристалл полупроводника в таком светодиоде расположен близко к линзе, за счет этого угол рассеивания 100°-140°.
Высота светодиода заметно уменьшена относительно его пропорций.
Еще одна отличительная особенность Straw Hat – большой радиус линзы.
SMD-светодиоды
Миниатюрность – главное достоинство SMD-светодиода.
Его корпус может быть размером в 1мм, и для экономии места выводы SMD-светодиода могут быть просто контактными площадками на корпусе.
Широкий спектр цветов и хорошая яркость – тоже достоинства SMD.
Виды осветительных светодиодов
Осветительный светодиод очень мощный и его интенсивность свечения высока. Поэтому он используется для изготовления ламп, люстр, прожекторов, автомобильных фар. Цвет осветительного светодиода – белый. Есть варианты теплой и холодной температурой свечения. К видам таких светодиодов можно отнести:
Осветительный SMD LED
Осветительный SMD LED схож с индикаторным SMD конфигурацией и размерами корпуса.
Но для увеличения яркости, кристалл покрыли слоем люминофора и вмонтировали на медную или алюминиевую основу, которая служит терморегулирующим элементом.
Угол рассеивания составляет 100° – 130°.
COB-светодиод
COB состоит из множества синих светодиодов, которые объединили в одном кристалле. Несколько десятков светодиодов расположены на общем люминофорном покрытии.
Filament LED
Описание такого светодиода можно ограничить изображением.
Это декоративная подсветка, КПД не высокий.
Лазерный светодиод
Кристалл лазерного светодиода имеет специфическую конфигурацию, которая позволяет долго удерживать внутри излучаемый фотон. При этом фотон вызывает образование новых фотонов, пока сила светового потока не превысит уровень потерь.
Таким образом, свет будто накапливается внутри кристалла и при достижении определенного уровня – высвобождается в виде лазерного луча.
Лазерные считывающие устройства, оптоволоконные коммуникации, медицинское оборудование или обычная лазерная указка работают благодаря лазерным светодиодам.
Маркировка светодиодов, измерения
Международных стандартов для светодиодов нет. Каждый производитель закладывает информацию об элементе на свое усмотрение.
Величины измерения показателей света для различных светодиодов могут быть указаны как в люменах, так и в канделах. Это связано с тем, что люмен – это полный световой поток, который включает в себя весь излучаемый источником свет (применимо для светодиодов с большим углом рассеивания или сверх ярких).
Количество кандел указывает силу света, который излучает источник в направлении определенного телесного угла (применимо для светодиодов с малым углом рассеивания).
К примеру, можно представить обычную лампу накаливания: измеряем интенсивность ее свечения в люменах – так как свет от нее равномерно распределяется во все стороны. Если же ее разместить внутри фонаря – направление светового потока ограничится углами рефлектора фонаря, и его интенсивность (силу) мы будем уже измерять в канделах.
Для определения полярности светодиода производители предлагают следующие варианты:
Длина ножки катода короче анода, и со стороны катода на корпусе сделан срез.
Размер посадочных площадок некоторых светодиодов может отличаться.
Производитель может явно указать на корпусе светодиода его цоколёвку посредством знаков «+» и «-», соответственно расположенным контактам, или применит собственную маркировку (точка, засечка на корпусе или другой знак).
Если определить визуально расположение контактов не получается – протестируйте светодиод сами, при этом не забывайте ограничивать ток резистором.
Вольтамперная характеристика
На графике представлена вольтамперная характеристика для всех типов светодиодов. Значения тока и напряжения могут колебаться в зависимости от модели светодиода. Но все они имеют прямую зависимость: с ростом напряжения увеличивается сила прямого тока.
Если подать на светодиод обратный ток, он не будет светиться, но по достижении отметки Umaxобр полупроводник выйдет из строя. Эта точка называется напряжением пробоя. Диапазон Umin – Umax называют рабочей зоной напряжения светодиода. Превышение максимальных значений пагубно влияют на его работоспособность.
Почему светодиоды не гаснут до конца?
Светодиоды могут не гаснуть до конца, потому что у них есть некоторое время задержки перед полным выключением. Это связано с особенностями работы светодиодов и схемы управления ими.
Светодиоды являются полупроводниковыми элементами, которые включаются и выключаются путем изменения напряжения на них. Однако, когда напряжение на светодиоде снижается до некоторого порогового значения, светодиод не гаснет сразу, а продолжает светиться слабым светом. Это явление называется свечением насыщения.
Кроме того, схема управления светодиодами также может влиять на то, насколько быстро светодиод гаснет. Некоторые схемы используют плавное изменение напряжения на светодиодах, чтобы достичь более плавного и мягкого перехода от яркого свечения к полному выключению. В результате этого светодиоды могут не гаснуть до конца, а оставаться слабо светящимися еще некоторое время после того, как они должны были бы выключиться.
Таким образом, некоторое свечение насыщения или небольшая задержка перед полным выключением светодиодов являются нормальными явлениями и не указывают на неполадки в работе светодиодов или их управляющих схем.