Мегаомметр — это прибор, который используется для измерения сопротивления изоляции. Он может быть полезен для проверки качества изоляции электропроводки и оборудования. В данной статье вы узнаете, как работает мегаомметр, что он измеряет и как им пользоваться для проверки сопротивления изоляции.
- Устройство и принцип работы мегаомметра
- Принцип проведения измерений
- Конструктивные особенности мегаомметров
- Как подключить мегаомметр?
- Для чего проверяют сопротивление изоляции кабеля?
- Допустимые значения сопротивления изоляции
- Порядок проверки сопротивления изоляции кабеля мегаомметром
- Работа с мегаомметром
- Документирование результатов измерений
- Периодичность замеров сопротивления изоляции
- Нормы испытательного напряжения для кабелей/оборудования
- Что следует выполнить после окончания измерения мегаомметром
- Советы по работе с мегаомметром:
Устройство и принцип работы мегаомметра
Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.
В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома для участка цепи ( I = U/R и R=U/I ).
Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.
Конструктивно модели мегаомметров принято разделять на два вида:
Аналоговые (электромеханические) — мегаомметры старого образца.
Аналоговый мегаомметр
Цифровые (электронные) – современные измерительные устройства.
Электромеханический мегаомметр
Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы
Упрощенная схема электромеханического мегаомметра
Обозначения:
- Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
- Аналоговый амперметр.
- Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
- Сопротивления.
- Переключатель измерений кОм/Мом.
- Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.
Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:
- Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
- На отображаемые данные влияет равномерность вращения динамо-машины.
- Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
- Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.
Современная аналоговая модель мегаомметра Ф4102
Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.
Электронный мегаомметр
Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.
Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.
Принцип проведения измерений
Мегаомметр позволяет измерить величину сопротивления изоляции. Для этого на его щупы подается напряжение и измеряется возникший электрический ток. Чтобы получить искомый результат, используется закон Ома:
где U – подаваемое на щупы напряжение,
I – измеренная сила тока.
Конструктивные особенности мегаомметров
Существуют разные модели мегаомметров, но все они включают в себя высоковольтный источник постоянного напряжения (генератор) и амперметр. Генератор выдает откалиброванное напряжение, величина которого выставляется заранее. По этой причине измерительную шкалу прибора можно сразу проградуировать в единицах измерения сопротивления, а не силы тока.
Виды мегаомметров
Можно выделить два основных вида приборов:
1. Мегаомметры, укомплектованные механическим генератором. Это приборы старого образца, в которых в качестве источника напряжения используются динамо-машины. Их нужно приводить в действие вручную с частотой примерно 2 об/сек. Они достаточно габаритные и тяжелые, но при этом не нуждаются в источнике питания. Такие приборы удобны своей автономностью.
Так выглядит мегаомметр с механическим генератором
2. Мегаомметры, укомплектованные электронным преобразователем. Это приборы нового поколения. В них источник постоянного напряжения работает от встроенных аккумуляторов или блока питания. Такие устройства компактные и легкие, но их работоспособность зависит от источника питания.
Так выглядит электронный мегаомметр
Как подключить мегаомметр?
Для каждой модели приборов данного назначения определена величина выходного напряжения, поэтому чтобы эффективно испытать изоляцию или измерить ее сопротивление требуется правильно подобрать мегаомметр.
Для проверки изоляции кабеля мегаомметром создают так называемый экстремальный случай, при котором на испытуемый участок подают напряжение выше номинального, но в допустимых нормах, прописанных в технической документации.
Например: генератор мегаомметра может выдавать:
- 100V;
- 250V;
- 500V;
- 700V;
- 1000V;
- 2500V.
Соответственно подача напряжения должна быть на порядок большей.
Длительность процесса измерения обычно не превышает 30 секунд или минуты, это необходимо для более точного выявления дефектов, а также исключения их последующего появления при перепадах напряжения в сети.
Основа технологического процесса измерения сопротивления это: подготовка к процессу, его выполнение и финальный этап. Каждый из них включает определенный перечень манипуляций необходимых для достижения поставленной цели без ущерба для окружающих и в первую очередь для себя.
При подготовке к работе следует организовать свои действия, изучить схему электрической установки, чтобы исключить возможную поломку, а также обеспечить свою безопасность.
Начиная работу, следует прежде проверить прибор на исправность. Для этого выводы соединяют с измерительными проводами. Затем их концы соединяют друг с другом пытаясь закоротить. После подачи напряжения замеряют показания измерений (они должны быть равны нулю). Следующий этап предусматривает повторный замер. В случае отсутствия неисправностей показание должно отличаться от предыдущего.
Затем подсоединяют переносное заземление к контуру земли, проверяют и обеспечивают отсутствие напряжение на участке, устанавливают переносное заземление, собирают схему измерения прибора, снимают переносное напряжение, снимают остаточный заряд, отключают соединительный провод, снимают переносное напряжение.
Финальный этап предусматривает восстановление разобранных цепочек, снятие шунтов и закороток, а также подготовку схемы к рабочему режиму. Документируют полученные результаты измерений сопротивления изоляционного слоя в акте поверки изоляции.
Для чего проверяют сопротивление изоляции кабеля?
Для чего вообще производят эти измерения? Ток у нас течет по проводнику, которым является медная или алюминиевая жила (или много жил). И между токопроводящей жилой и окружающей средой находится изоляция – пластмассовая, резиновая, ПВХ, бумажная, масляная.
Изоляция защищает жилу от соприкосновения с другой жилой, с окружающей средой, с человеком. Характеристикой качества изоляции, кроме прочих, является сопротивление изоляции. Эта характеристика измеряется в омах и их производных (кило, мега, гига).
Сопротивление – это величина обратная проводимости, то есть она показывает способность не пропускать электрический ток. Чем слабее изоляция, тем больше вероятность, что ток найдет путь и распространится из кабеля через токопроводящие поверхности и материалы. То есть произойдет пробой изоляции кабеля на поверхность какую-нибудь.
Изоляция может ухудшаться по следующим причинам:
- старение изоляции в течении времени
- увеличенная влажность
- механические повреждения
- воздействие агрессивной среды
Допустимые значения сопротивления изоляции
Величины сопротивления изоляции (Rx) кабелей различных типов должны быть выше допустимых значений. Допустимые значения определяются в ГОСТах, технических условиях, нормах и объемах испытания электрооборудования. Если брать нормы по испытанию сопротивления изоляции силовых кабельных линий, то тут всё просто:
- испытываются мегаомметром на 2500В на протяжении 1 минуты
- значение Rх должно быть больше 0,5 МОм для кабелей до 1кВ включительно
- для кабелей напряжением выше 1кВ значение сопротивления изоляции не нормируется, а факторами, определяющими пригодность является величина тока утечки при высоковольтных испытаниях и отсутствие пробоев
Порядок проверки сопротивления изоляции кабеля мегаомметром
Приходишь на объект, и видишь например следующую картину.
Перед непосредственно проверкой сопротивления изоляции надо убедиться, что:
- жилы кабеля прозвонены и промаркированы (о прозвонке читайте тут)
- на жилах кабеля, куда будем подавать напряжение нет грязи, нагори, краски (на жиле кабеля такого нет, но это может быть на заземлении, которое окрашивают или же оно может быть покрыто слоем ржавчины, тогда надо отскрести отверткой или ножом)
- на другом конце кабеля никто не работает и кабель отсоединен от нагрузки и источника питания (не стоит подавать напряжение на монтажника, который может разделывать кабель с другой стороны, или замерять Rx кабеля с нагрузкой, также стоит проследить, чтобы мы не подали высокое напряжение на вторичные цепи и элементы, которые могут от 2500В прийти в негодность, поэтому иногда их просто мегерят на 500В)
- кабель обесточен и предусмотрены меры, не допускающие случайную подачу напряжения на испытуемый кабель (замки, плакаты, выкачены ячейки)
- если мегер-тест (измерение сопротивления изоляции) идет в комплексе с высоковольтными испытаниями, то нужно убедиться, что на втором конце кабеля (второй конец – противоположный от места испытания) выставлен человек или помещение заперто и огорожено с вывешенными плакатами
- мегаомметр находится в исправном состоянии и годен к эксплуатации (клеймо поверки на корпусе и концы прибора испытаны)
- вы имеете право и квалификацию работать с мегаомметром и производить данный вид работ (3 группа по электробезопасности и не просроченная проверка специальных знаний, плюс медосмотр)
- провода мегаомметра должны иметь высокую изоляцию (тут можно еще сделать следующее: свести два провода мегаомметра и подать напряжение – значение должно быть нулевым, так как изоляции между проводами нет, а если развести – то бесконечность – так как сопротивление воздуха велико)
После того, как вышеприведенные пункты стали очевидно реализованы, можно приступать к делу. Помегерим!
Работа с мегаомметром
При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.
Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.
Один из вариантов современных мегаомметров
Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.
Требования по обеспечению безопасных условий работы
Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:
- Держать щупы только за изолированную и ограниченную упорами часть.
- Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).
Как пользоваться мегаомметром: правила электробезопасности - Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
- После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
- После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
- Работать в перчатках.
Правила не очень сложные, но от их выполнения зависит ваша безопасность.
Как подключать щупы
На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:
- Э — экран;
- Л- линия;
- З — земля;
Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.
Щупы для мегаомметра
На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).
Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:
- К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
- К жиле и «земле», если проверяем «пробой на землю».
Есть буква «Э» — этот конец вставляется в гнездо с такой же буквой
Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.
Процесс измерения
Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей. Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.
Наименование элементаНапряжение мегаомметраМинимально допустимое сопротивление изоляцииПримечания
Электроизделия и аппараты с напряжением до 50 В | 100 В | Должно соответствовать паспортным, но не менее 0,5 МОм | Во время измерений полупроводниковые приборы должны быть зашунтированы |
тоже, но напряжением от 50 В до 100 В | 250 В | ||
тоже, но напряжением от 100 В до 380 В | 500-1000 В | ||
свыше 380 В, но не больше 1000 В | 1000-2500 В | ||
Распределительные устройства, щиты, токопроводы | 1000-2500 В | Не менее 1 МОм | Измерять каждую секцию распределительного устройства |
Электропроводка, в том числе осветительная сеть | 1000 В | Не менее 0,5 МОм | В опасных помещениях измерения проводятся раз в год, в друих – раз в 3 года |
Стационарные электроплиты | 1000 В | Не менее 1 МОм | Измерение проводят на нагретой отключенной плите не реже 1 раза в год |
Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).
Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.
Как проводить измерения мегаомметром
После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.
Документирование результатов измерений
По итогам проведенных работ подготавливается отдельный документ, в котором фиксируются все необходимые данные.
Важно! Согласно ПУЭ в трехфазных сетях потребуется выполнить не менее 10 замеров, каждый из которых учитывается в протоколе измерения сопротивлений изоляции.
В бытовых однофазных цепях вполне достаточно будет провести три замера. В последних строчках заполняемого протокола обязательно должна присутствовать фраза о соответствии полученных результатов требованиям ПУЭ.
Кроме того, в них вносятся следующие данные:
- Дата и объем проведенных обследований.
- Сведения о составе рабочей бригады (из обслуживающего персонала).
- Используемые при проверке измерительные приборы.
- Схема их подключения, окружающая температура, а также условия проведения работ.
По завершении протоколирования измерений журнал с соответствующими записями убирается в надежное место, где он хранится до следующих испытаний. Сохраненные таким образом акты замеров в любой момент могут потребоваться для того, чтобы в аварийных ситуациях служить доказательством исправности поврежденного изделия.
Готовый протокол обязательно заверяется подписью производителя работ и проверяющего, назначенного из состава оперативного персонала. Для оформления актов замеров допускается использовать обычный блокнот, но более законным и надежным способом считается заполнение специального бланка (его образец приводится ниже).
Образец протокола измерения сопротивления изоляции
Заранее подготовленная форма протокола содержит пункты, в которых указываются:
- Порядок проведения измерительных операций.
- Применяемые при этом средства измерения.
- Основные нормативы по контролируемому параметру.
Кроме того, форма актов измерения электропроводок содержит готовые таблицы, подготовленные к заполнению. В таком виде документ составляется на компьютере всего лишь один раз, после чего он распечатывается на принтере в нескольких экземплярах. Такой подход позволяет сэкономит время на подготовку документации и придает актам замеров законченный, официальный вид.
Периодичность замеров сопротивления изоляции
Требованиями ПУЭ предусмотрены определенные сроки, с учетом которых организуются и проводятся измерения сопротивления изоляции мегаомметром. Всем желающим поближе познакомиться с тем какова периодичность измерений сопротивления изоляции в осветительных сетях наружных установок, а также в их силовой части предлагаем изучить следующие разделы.
Когда и при каких условиях производятся замеры в наружных установках
Экспертиза электропроводки и других электротехнических объектов (измерение сопротивления защитной изоляции) проводится в следующих обязательных случаях:
- При изготовлении продукции на производящем ее предприятии.
- Непосредственно на электротехническом объекте перед началом монтажных работ.
- По их завершении перед запуском объекта в эксплуатацию (перед подачей напряжения на него).
- После серьезных аварий и выявления недопустимых дефектов.
- При проведении технического обслуживания в сроки, оговоренные в технической документации на конкретный вид оборудования.
При нарушении этих требований и несоблюдении установленных сроков проверок сопротивления изоляции увеличивается вероятность появления сбоев в работе электроустановок. Нарушителей могут ожидать предусмотренные законом санкции и штрафы. Поэтому лицами, ответственными за электрооборудование на предприятиях, своевременно подготавливаются планы проведения замеров изоляции.
Сроки проведения обследований
Частота проведения замеров сопротивления изоляции в электроустановках, кабельных линиях и электропроводках зависит от их типа, условий эксплуатации и общего состояния объекта.
Так, для проверки сопротивления кабелей, эксплуатируемых на улице и во взрывоопасных помещениях эти мероприятия организуются не реже одного раза в год. Для оборудования и кабельных линий, проложенных внутри помещений, и в ряде других случаев этот показатель измеряется не реже одного раза в течение 3-х лет.
Какова периодичность измерения сопротивления изоляции осветительных сетей наружных установок?
Обратите внимание: Согласно ПУЭ сопротивление изоляции кабелей, смонтированных в подъемных кранах и городских лифтах, должно проверяться ежегодно (посредством того же измерителя Fluke 1507, например).
Аналогичные временные периоды предусматриваются и для электрических плит бытового и промышленного назначения. Различных подходов к проведению испытаний сопротивления существует множество, а перечисленные выше варианты взяты только как частные примеры.
В заключение отметим, что согласно действующим нормативам (смотрите ПУЭ и ПТЭЭП, в частности) периодичность проверок сопротивления определяется конкретными условиями эксплуатации кабельных изделий. В каждом частном случае испытания организуются и проводятся в соответствие с требованиями, приведенными в сопроводительной документации на них.
Нормы испытательного напряжения для кабелей/оборудования
Рабочее напряжение кабеля/оборудования | Нормы испытательного напряжения постоянного тока |
От 24 до 50 В | От 50 до 100 В постоянного тока |
От 50 до 100 В | От 100 до 250 В постоянного тока |
От 100 до 240 В | От 250 до 500 В постоянного тока |
От 440 до 550 В | От 500 до 1000 В постоянного тока |
2400 В | От 1000 до 2500 В постоянного тока |
4100 В | От 1000 до 5000 В постоянного тока |
От 5000 до 12 000 В | От 2500 до 5000 В постоянного тока |
> 12 000 В | От 5000 до 10 000 В постоянного тока |
В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).
Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).
Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).
Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.
Что следует выполнить после окончания измерения мегаомметром
Сразу после выполнения измерений, необходимо сделать три главные вещи. Нужно внесение в протокол измерительных результатов, приведения в порядок рабочего места с инструментами и приспособлениями, а дальше снятие с токоведущих частей остаточного заряда кратковременным заземлением.
Важно отметить, что по требованию охраны труда, в конце работы должна быть отключена измерительная аппаратура, разряжена цепь, которая находится под мегаомметровым воздействием. Далее нужно сделать отсоединение приборных проводов от тока, записать измерительные результаты в ведомость. Потом сообщить лицу, который ответственен за производственные работы. Обо всех недостатках, которые были замечены в процессе деятельности, нужно доложить, чтобы были приняты меры.
Правильное отключение как залог сохранения работоспособности прибора
В целом, мегаомметр — измерительный прибор, позволяющий изучить показания сопротивления электросетевых и приборных обмоток. Отличается от других аппаратов работой на высоком напряжении. Напряжение генерируется самим устройством благодаря встроенной батареи. Область применения его обширна: обычно используется во всех видах промышленности, где есть высокое напряжение. Использовать несложно, главное — изучить инструкцию по применению мегаомметра эс0202 2г и соблюдать технику безопасности. В противном случае, возможна поломка и, как следствие, необходимость ремонта.
Советы по работе с мегаомметром:
- ⚡некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
- ⚡перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
- ⚡измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
- ⚡когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
- ⚡если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
- ⚡если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
- ⚡при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.
Предыдущая
Следующая
>
Какие основные правила безопасности при работе с мегаомметром?
Мегаомметр (также известный как мегатестер) — это прибор, который используется для измерения очень высоких сопротивлений, например, для тестирования изоляции проводов и оборудования. При работе с мегаомметром необходимо соблюдать определенные правила безопасности, чтобы избежать риска поражения электрическим током. Некоторые из основных правил безопасности при работе с мегаомметром включают в себя:
-
Проверьте прибор на наличие повреждений и правильность подключения.
-
Никогда не подключайте мегаомметр к электрической сети или к другим источникам высокого напряжения.
-
Никогда не подключайте мегаомметр к оборудованию или проводам, которые могут быть под напряжением.
-
Перед использованием мегаомметра убедитесь, что все оборудование и провода, с которыми вы работаете, изолированы и не имеют повреждений.
-
Никогда не касайтесь проводов, когда мегаомметр включен.
-
Никогда не проводите тестирование, если вы находитесь во влажной или мокрой обстановке.
-
Перед подключением мегаомметра убедитесь, что он выключен.
-
Используйте специальные перчатки и другие средства защиты, если это необходимо.
-
Следуйте инструкциям, предоставленным производителем, по использованию и безопасному хранению мегаомметра.
-
Никогда не разбирайте мегаомметр самостоятельно или не пытайтесь выполнять ремонтные работы без соответствующей квалификации.
Общее правило — следуйте инструкциям производителя и всегда помните о безопасности при работе с электричеством.