Как рассчитать делитель напряжения
- Определение
- Делитель на резисторах
- Делитель на конденсаторах
- Дополнение схем
- Заключение
- Видео по теме
В сфере электроники и сложных электрических цепей часто возникает необходимость разделения входящего напряжения. Для решения этой задачи в схему встраивается устройство, которое носит название делитель напряжения.
Определение
Делители напряжения могут быть построены с использованием различных элементов. В их роли могут выступать резисторы, конденсаторы, катушки индуктивности. Независимо из каких компонентов построено устройство, оно состоит из 2 основных частей:
- Верхнее плечо. Оно включает в себя участок с положительным значением и точкой подключения к следующему участку цепи.
- Нижнее плечо. Оно состоит из участка с нулем, является средней точкой цепи.
Оба плеча имеют строго последовательное соединение. Сумма напряжений их выходов равна общему входящему значению за вычетом небольшой величины рассеивания.
Делитель на резисторах
Чтобы понять, как работает делитель напряжения, необходимо рассмотреть этот простой элемент, построенный с использованием резисторов. Такое устройство может использоваться для деления переменного или постоянного тока. Простейший прибор состоит из 2 резисторов с последовательным соединением. Принцип работы будет следующим:
- На контакты «U» подается ток от источника, определенной величины.
- При условии, если резисторы равны по своему сопротивлению, на выходе «U1» и «U2» напряжение будет разделено пополам, а их сумма будет равна величине входящего напряжения.
Первоначальный расчет величины делается с использованием выражения: U=I·R.
В таких устройствах основную роль играет всем нам известный закон Ома. Согласно ему, должно сохраняться условие, при котором снижение напряжения имеет прямую пропорциональность величине сопротивления резисторов.
Принимая во внимание первый закон Кирхгофа, входящая величина напряжения будет равна величине токов, протекающих через резисторы. Ниже приведена схема резисторного делителя напряжения.
Определить величину падения напряжения на каждом резисторе можно по формулам, которые представлены ниже:
Отсюда можно сделать вывод о величине на обоих концах цепи:
Далее можно определить значение тока в цепи, используя выражение:
Значение напряжения на каждом резисторе вычисляется по отдельным формулам:
Если резистивный делитель напряжения состоит из резисторов с разными сопротивлениями, выражение поможет рассчитать величину для каждого элемента отдельно. Для примера можно выполнить следующее вычисление:
- U=50 В.
- Сопротивление резистора R1=5 кОм.
- Сопротивление резистора R2=5 кОм.
- Необходимо найти величину напряжения на выходах U1, U2.
Для начала необходимо найти силу тока, протекающего по данной цепи: I=50/(5000+5000)=0.005 А=5 мА.
Далее можно узнать величину падения напряжения для каждого резистора по формуле: U1=0.005×5000=25 вольт.
Так как оба резистора имеют одинаковое сопротивление, выходная величина «U2» также равна 25 В. Теперь проведем простой расчет с разными значениями сопротивлений.
- U=50 В.
- R1=5 кОм.
- R2=3 кОм.
Сначала найдем силу тока: I=50/(5000+3000)=0.00625 А=6.25 мА.
Далее отдельно вычислим значение падения напряжения:
- U1=0.00625×5000=31.25 В.
- U2=0.00625×3000=18.75 В.
Рассчитанная величина имеет коэффициент рассеивания, который равен 2 вольта, поэтому точные значения как в примере увидеть не получится.
Благодаря данным формулам можно рассчитать любой неизвестный параметр делителя, но также необходимо помнить, что входной ток делителя должен быть минимум в 10 раз больше тока нагрузки и меньше максимального тока источника. Например, с нагрузкой в 20 мА, входящий ток должен быть больше 200 мА и источник рассчитан на такой же ток или больше. Поэтому не часто можно встретить делитель в схемах с большой нагрузкой.
Резисторный делитель электрического напряжения страдает от потерь, связанных с рассеиванием. Это связано с тем, что резисторы при работе нагреваются и часть тока при этом просто преобразуется в тепловую энергию.
Делитель на конденсаторах
Делитель электрического напряжения на конденсаторах может использоваться только в цепях переменного тока. Конденсаторы используются, как емкостные реактивные сопротивления.
В делителях конденсаторного типа должно сохраняться правило зависимости сопротивления от частоты и емкости самих конденсаторов. Если используется ёмкостный делитель, то расчет сопротивления конденсатора делается с помощью формулы:
Данная формула состоит из следующих значений:
- Xc — реактивное сопротивление;
- π — число пи, которое равно 3.1415;
- f — частота тока, Гц;
- С — емкость, Фарад;
Для подобных схем должно сохраняться условие: сопротивление всегда меньше емкости. Исходя из этого, можно сделать вывод, что чем больше ёмкостные характеристики конденсатора, тем меньше степень падения напряжения. Расчет выходящего напряжения с двумя конденсаторами можно сделать следующим образом:
UС1 = Uпит.×С2/(С1+С2)
Конденсаторный тип устройств более устойчивый, чем делитель напряжения на резисторах. При его работе прослеживается практически нулевая потеря при рассеивании. Причина этого эффекта в качестве и составе самого диэлектрика.
Дополнение схем
При создании схем УНЧ, инженерам необходимо занижение высоковольтного значения тока для обеспечения нормальной работы транзистора. Справится с этой задачей помогает делитель. Например, такое резисторное устройство используется для питания базового контакта транзистора. Таким образом создается обратная отрицательная связь по электрическому току, которая возникает благодаря наличию резистора R3. Схема усилителя каскада по схеме с ОЭ представлена на рисунке ниже.
При проектировании стабилизаторов используется стабилитрон, как часть балансного делителя. Такая схема помогает снизить нагрузку на устройство, значительно выровнять выходной ток. Стабилитрон, как и диод работает на пробой, если обратный ток достигает определенной величины.
Основное отличие заключается в том, что при повышении порогового значения, в стабилитроне не происходит теплового, электрического пробоя из-за линейной разности потенциалов.
Заключение
В статье была дана информация, как произвести расчет делителя напряжения, описаны разновидности этих устройств, формулы расчета. Зная, зачем используется делитель, можно применять это устройство для создания простых и сложных электронных схем с занижением напряжения до необходимых значений.
Видео по теме
В чем разница между линейным и фазным напряжением?
Линейное напряжение и фазное напряжение относятся к электрическим системам, в которых используется трехфазное переменное напряжение.
Линейное напряжение (U<sub>л</sub>) является разностью потенциалов между любыми двумя фазами в трехфазной системе. В трехфазной системе линейное напряжение можно вычислить по формуле:
U<sub>л</sub> = √3 * U<sub>ф</sub>,
где U<sub>ф</sub> — фазное напряжение.
Фазное напряжение (U<sub>ф</sub>) — это потенциал между любой фазой и нулевой точкой в трехфазной системе.
Разница между линейным и фазным напряжением заключается в том, что линейное напряжение является напряжением между фазами, а фазное напряжение является напряжением между фазой и нулевой точкой. Фазное напряжение используется для расчета мощности однофазной нагрузки, а линейное напряжение используется для расчета мощности трехфазной нагрузки.